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Robust baseline correction algorithm for signal dense NMR spectra
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Abstract

This paper outlines a fully automated algorithm for baseline correction. Based on our experience with NMR spectra of complex mix-
tures, this algorithm is designed to automatically differentiate signal points from baseline points. The algorithm’s strength is its ability to
accurately determine baseline points in very dense spectra, without destroying the line shapes of prominent peaks. The algorithm
described is implemented in Chenomx NMR Suite 4.6. It is demonstrated here using two separate spectra acquired on two different
NMR spectrometers.
� 2007 Elsevier Inc. All rights reserved.
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1. Background

Experimental nuclear magnetic resonance (NMR) spec-
tra tend to contain baseline distortions artifacts which can
be caused by a variety of different sources, including instru-
ment drifts and unwanted macro molecule signals. Meta-
bolomics applications of NMR spectra often require the
identification and quantitation of metabolites found in
complex mixtures, since these mixtures can give a snapshot
of the state of an organism. It is important to have a flat
baseline in order to accurately quantify, hence the need
for a good baseline correction algorithm. Systematic base-
line distortions also add unwanted correlations in spectral
binning data when building correlation models.

Early development on baseline correction algorithms
includes work described by Pearson [1], in which baseline
correction can be broken down into three steps. The first
step is to determine signal and baseline noise in the spec-
trum. The second is to use that information to build a
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model of the baseline. This model can be represented using
interpolated line segments, or cubic splines if a smoother
line is desired. Finally the third, and somewhat trivial step,
is to ‘‘correct’’ the signal by subtracting the baseline model
from the original signal. Further developments by Zolnai
[2], Heuer and Haeberlen [3], Guntert and Wuthrich [4],
Bartels [5] all follow this standard pattern and have made
significant contributions to each step.

While the problem of baseline correction in the realm of
NMR signals is not new and there are some good solutions
already available, in our experience the available methods
work best on NMR spectra that do not have a very high
signal density [1,4,5]. Many existing algorithms tend to be
overly aggressive, often destroying the line shapes of prom-
inent peaks in spectra with a wide dynamic range of peak
shapes and sizes. The application of many of these methods
to metabolomics data is therefore problematic, since NMR
spectra of complex biofluids often result in very signal
dense spectra. In this paper we propose a new algorithm
for baseline correction which addresses this problem in a
way that does not destroy the line shapes of prominent
peaks. Our algorithm is designed for more densely popu-
lated spectra, but retains good performance in sparsely
populated spectra as well. The algorithm was developed
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based on our combined knowledge of both NMR signals
and of the baseline distortions that are common in the
realm of complex mixtures. This paper will focus on step
one of the general three-step process: A systematic applica-
tion of heuristic rules which can accurately determine the
baseline points in a 1D NMR spectrum.

2. Approach

This section contains a detailed outline of our baseline
correction algorithm, as implemented in Chenomx NMR
Suite 4.6. The goal of the algorithm is to differentiate the
regions of the spectrum (S) that are considered to be base-
line noise from those that are considered to be signal. This
determination is then stored in a boolean vector known as
a signal map (SM). SM has the same dimensions as S; each
element contains information about whether the point cor-
responding in S is signal (true) or baseline noise (false).

The first and most important step in the algorithm is the
high pass signal identification step. The objective here is to
conservatively identify regions of the spectrum that are sig-
nal by looking at a modified version of S wherein all low
frequency curves and rolls have been removed. Once the
signal regions are identified, everything else can be consid-
ered baseline points. In order to accurately determine what
is signal, the algorithm first attempts to calculate the stan-
dard deviation of the noise in S. This is a common step in
other baseline correction algorithms [1,4,5]. However, the
typical method for determining the standard deviation of
noise by dividing the original spectrum (S) into multiple
regions is insufficient. Rolling baselines and areas of high
signal make it difficult to estimate the noise in a spectrum.

To overcome this problem, the authors of this algorithm
chose to first use a high pass filter on the spectrum. Specif-
Fig. 1. Top: original spectrum (S) with a noticeable baseline distortion. Bott
frequency distortions. This spectrum is of a human urine sample on a 600 MH
ically, a moving average filter was used. This filter is
designed to pass 0.5% of the high frequency through in
Nyquist frequency. The resulting signal is known as the
high pass filtered spectrum (HPFS) and contains only the
high frequency noise and signal. Fig. 1 shows a spectrum
before and after the high pass filter has been applied. From
Fig. 1, we can also see the resultant spectrum is highly dis-
torted and not very useful in itself. However, the HPFS is
still useful to obtain a good estimate of the high frequency
baseline noise, because rolls in the baseline have been
removed, and signal dense areas have been narrowed.

At this point the HPFS is divided into evenly spaced seg-
ments, and the standard deviation of each segment is calcu-
lated. A percentage (bfraction) of the segments with the
lowest intensities are assumed to be baseline signal, and the
standard deviation of only the points contained within these
segments is recalculated (stdn). bfraction can be adjusted
based on the spectrum signal density. A value of between
0.2 and 0.5 was found to work well for complex mixtures.

Once stdn has been determined, the next step is to deter-
mine what percentage of the entire spectrum is signal. We
continue to use the HPFS and consider all points with
absolute intensities greater than two times the standard
deviation of the noise to be signal. The indices of these
absolute intensities are now sorted based on the intensities
themselves and then used in the signal windowing step.

The signal windowing step returns back to the original
spectrum (S). Each signal point found in the previous steps
is now used as the center of a signal window. The signal
window width used is 0.2% of the total sweep width of
the spectrum. Each point inside of the signal window is
now also marked as signal in SM. Fig. 2 shows a spectrum
overlaid with the baseline points that were found after the
signal windowing step.
om: High pass filtered spectrum (HPFS) showing the removal of the low
z magnet using a presat pulse sequence.



Fig. 2. Baseline points defined after signal windowing step (thick black). This spectrum is of a mouse serum sample run on a 600 MHz magnet using a
presat pulse sequence.

Fig. 3. Baseline points defined after correction for prominent Lorentzian peaks (thick black). (A) Region covered by three picked Lorentzian peaks.
(B) Region covered by one picked Lorentzian peak. (C) Region added to SM to be considered as signal.

Fig. 4. (a) Original spectrum of acidic plant extract, (b) baseline distortion model, (c) spectrum after baseline correction.
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The novelty of this algorithm is the use of a high pass
filter. However, it is also a weakness: the high pass filter
applied to very tall or large peaks in a spectrum will often
misidentify the tails of these peaks as baseline in the signal
map. In order to correct for this, a second step is applied.
The objective of this step is to determine the most promi-
nent Lorentzian peaks in the spectrum and guarantee that
their tails are marked as signal in SM. This is because the
tails of the most prominent peaks are often filtered out in
the high pass filter, and misidentified as baseline signal
due to their size relative to the signal window.

The first part of this step is to calculate the average or
mean of the entire spectrum (S) in the frequency domain
using only the positive values. Then, using an automatic
peak picking algorithm, peaks that are twice the mean of
the spectrum are located. The widths of the peaks are deter-
mined by walking halfway down both sides to find the half
width of each peak. The peaks are then mathematically
modeled as pure Lorentzian lineshapes and the central por-
tion of S that contains 95% of their area is marked as signal
in SM. Note that this often fixes regions that were errone-
ously marked as baseline in previous steps.
Fig. 5. (a) Original acid spectrum, (b) baseline distort
A 95% cutoff was needed because Lorentzian peaks have
infinite tails. The algebraic model for a Lorentzian is:

LðxÞ ¼ A � w2

w2 þ 4 � ðx� cÞ2
ð1Þ

where, for any given position x {Hz}, width w {Hz}, center
c {Hz}, and amplitude A, L is the intensity of the Lorentz-
ian at x. Once these additional ‘‘signal points’’ are marked
in SM, the determination of signal and baseline points is
complete. Fig. 3 shows the same spectrum as Fig. 2 with
baseline points overlaid (in thick black) after correcting
for prominent Lorentzian peaks. You will notice the cor-
rection of the misinterpreted baseline points (in thick
black). The 95% regions from the picked Lorentzian peaks
(A and B) and the region added to the SM (C) are also
shown in Fig. 3.

We showcase the algorithm’s ability to accurately deter-
mine the baseline points. To model these points in a spec-
trum, the original baseline points were used and a simple
linearly interpolated line was used to fill in the gaps
between the baseline points. A more sophisticated natural
cubic spline model is used in Chenomx NMR Suite 4.6.
ion model, (c) spectrum after baseline correction.
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3. Application

The performance of the algorithm is demonstrated in
the following two examples, which were acquired from dif-
ferent NMR spectrometers and have different baseline dis-
tortion problems. As well, the first of these examples has a
high signal density while the second example is sparse in
signal density. These spectra were also chosen to show
clearly the algorithm’s ability to handle gross distortions
in the baseline, while at the same time showing that it is
able to non-destructively handle the more subtle baselines
generated from the most advanced spectrometers today.

For our first example, we applied the algorithm to an
NMR spectrum of an acidic plant extract. This sample
was run through an NMR flow system on a 400 MHz Var-
ian spectrometer using a vast1d pulse sequence. Some of
the older flow systems, which make use of the ssfilter
VNMR command, do not always create straight baselines.
As can be seen from the black line in Fig. 4a, the original
spectrum had a fairly high signal density, as well as an
obvious baseline distortion. The baseline points identified
by the algorithm are shown, along with linearly interpo-
lated points in between the gaps (in thick black) in
Fig. 4b. Finally, the baseline corrected spectrum (i.e. after
subtraction) is displayed in Fig. 4c.

Our second example uses an acid sample acquired on an
older JEOL Spectrometer, which did not have digital filter-
ing. The lack of digital filtering is probably the cause of this
spectrum’s pronounced baseline roll. This spectrum was
acquired on a 500 MHz magnet using a single-pulse
sequence. Fig. 5a shows the original spectrum. Fig. 5b
shows the baseline points identified by the algorithm with
linearly interpolated points in between the gaps (in thick
black). Fig. 5c shows again the high-quality spectrum after
the baseline distortion has been removed.

4. Conclusions

The baseline correction algorithm outlined in this paper
was designed using characteristic distortions found com-
monly in spectra from complex mixtures. It follows the
established three-stage template and aims at ensuring the
accurate determination of baseline points without indenti-
fying too many false positives. The result is a high-quality
baseline corrected algorithm that can be used in a variety of
metabolomics applications.
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